Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nutrients ; 16(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613064

RESUMO

Panax ginseng fruit is known to have various biological effects owing to its large amount of saponins such as ginsenosides. In the present study, ginseng berry juice was confirmed to be effective against acute inflammation. Ginseng berry juice was used for analysis of active constituents, antioxidant efficacy, and in vivo inflammation. A high-performance liquid chromatography method was used for analysis of ginsenosides. In an HCl/ethanol-induced acute gastric injury model, microscopic, immunofluorescent, and immunohistochemical techniques were used for analysis of inhibition of gastric injury and mechanism study. In a mouse model of acute gastritis induced with HCl/ethanol, ginseng berry juice (GBJ, 250 mg/kg) showed similar gastric injury inhibitory effects as cabbage water extract (CB, 500 mg/kg, P.O). GBJ dose-dependently modulated the pro-inflammatory cytokines such as Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), and Interleukin-13 (IL-13). GBJ inhibited the activation of Nuclear Factor kappa bB (NF-κB) and suppressed the expressions of cyclooxigenase-2 (COX-2) and prostaglandin 2 (PGE2). The anti-inflammatory effect of GBJ is attributed to ginsenosides which have anti-inflammatory effects. Productivity as an effective food source for acute gastritis was analyzed and showed that GBJ was superior to CB. In addition, as a functional food for suppressing acute ulcerative symptoms, it was thought that the efficacy of gastric protection products would be higher if GBJ were produced in the form of juice rather than through various extraction methods.


Assuntos
Gastrite , Ginsenosídeos , Panax , Animais , Camundongos , Frutas , Ginsenosídeos/farmacologia , Inflamação/tratamento farmacológico , Etanol , Anti-Inflamatórios/farmacologia
2.
Biomol Ther (Seoul) ; 32(1): 104-114, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38148556

RESUMO

Licochalcone C (LCC; PubChem CID:9840805), a chalcone compound originating from the root of Glycyrrhiza inflata, has shown anticancer activity against skin cancer, esophageal squamous cell carcinoma, and oral squamous cell carcinoma. However, the therapeutic potential of LCC in treating colorectal cancer (CRC) and its underlying molecular mechanisms remain unclear. Chemotherapy for CRC is challenging because of the development of drug resistance. In this study, we examined the antiproliferative activity of LCC in human colorectal carcinoma HCT116 cells, oxaliplatin (Ox) sensitive and Ox-resistant HCT116 cells (HCT116-OxR). LCC significantly and selectively inhibited the growth of HCT116 and HCT116-OxR cells. An in vitro kinase assay showed that LCC inhibited the kinase activities of EGFR and AKT. Molecular docking simulations using AutoDock Vina indicated that LCC could be in ATP-binding pockets. Decreased phosphorylation of EGFR and AKT was observed in the LCC-treated cells. In addition, LCC induced cell cycle arrest by modulating the expression of cell cycle regulators p21, p27, cyclin B1, and cdc2. LCC treatment induced ROS generation in CRC cells, and the ROS induction was accompanied by the phosphorylation of JNK and p38 kinases. Moreover, LCC dysregulated mitochondrial membrane potential (MMP), and the disruption of MMP resulted in the release of cytochrome c into the cytoplasm and activation of caspases to execute apoptosis. Overall, LCC showed anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, inducing ROS generation and disrupting MMP. Thus, LCC may be potential therapeutic agents for the treatment of Ox-resistant CRC cells.

3.
Biomater Res ; 27(1): 83, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660070

RESUMO

BACKGROUND: Despite the effectiveness of glucagon-like peptide-1 agonist (GLP-1A) in the treatment of diabetes, its large molecular weight and high hydrophilicity result in poor cellular permeability, thus limiting its oral bioavailability. To address this, we developed a chimeric GLP-1A that targets transporter-mediated endocytosis to enhance cellular permeability to GLP-1A by utilizing the transporters available in the intestine, particularly the apical sodium-dependent bile acid transporter (ASBT). METHODS: In silico molecular docking and molecular dynamics simulations were used to investigate the binding interactions of mono-, bis-, and tetra-deoxycholic acid (DOCA) (monoDOCA, bisDOCA, and tetraDOCA) with ASBT. After synthesizing the chimeric GLP-1A-conjugated oligomeric DOCAs (mD-G1A, bD-G1A, and tD-G1A) using a maleimide reaction, in vitro cellular permeability and insulinotropic effects were assessed. Furthermore, in vivo oral absorption in rats and hypoglycemic effect on diabetic db/db mice model were evaluated. RESULTS: In silico results showed that tetraDOCA had the lowest interaction energy, indicating high binding affinity to ASBT. Insulinotropic effects of GLP-1A-conjugated oligomeric DOCAs were not different from those of GLP-1A-Cys or exenatide. Moreover, bD-G1A and tD-G1A exhibited improved in vitro Caco-2 cellular permeability and showed higher in vivo bioavailability (7.58% and 8.63%) after oral administration. Regarding hypoglycemic effects on db/db mice, tD-G1A (50 µg/kg) lowered the glucose level more than bD-G1A (50 µg/kg) compared with the control (35.5% vs. 26.4%). CONCLUSION: GLP-1A was conjugated with oligomeric DOCAs, and the resulting chimeric compound showed the potential not only for glucagon-like peptide-1 receptor agonist activity but also for oral delivery. These findings suggest that oligomeric DOCAs can be used as effective carriers for oral delivery of GLP-1A, offering a promising solution for enhancing its oral bioavailability and improving diabetes treatment.

4.
Cells ; 12(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37681922

RESUMO

Oxidative damage and inflammation are among the very significant aspects interrelated with cancer and other degenerative diseases. In this study, we investigated the biological activities of a 25 kDa protease (SH21) that was purified from Bacillus siamensis. SH21 exhibited very powerful antioxidant and reactive oxygen species (ROS) generation inhibition activity in a dose-dependent approach. The mRNA and protein levels of antioxidant enzymes such as superoxide dismutase 1 (SOD1), catalase (CAT), and glutathione peroxidase 1 (GPx-1) were enhanced in the SH21-treated sample. SH21 also increased the transcriptional and translational activities of NF-E2-related factor 2 (Nrf2) with the subsequent development of detoxifying enzyme heme oxygenase-1 (HO-1). In addition, SH21 showed potential anti-inflammatory activity via inhibition of nitric oxide (NO) and proinflammatory cytokines, such as TNF-α, IL-6, and IL-1ß, production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. At concentrations of 60, 80, and 100 µg/mL, SH21 potentially suppressed nitric oxide synthase (iNOS) and cytokine gene expressions. Furthermore, SH21 significantly released lactate dehydrogenase (LDH) enzyme in cancer cell supernatant in a concentration-dependent manner and showed strong activity against three tested cancer cell lines, including HL-60, A549, and Hela. Our results suggest that SH21 has effective antioxidant, anti-inflammatory, and anticancer effects and could be an excellent therapeutic agent against inflammation-related diseases.


Assuntos
Fator 2 Relacionado a NF-E2 , Peptídeo Hidrolases , Humanos , Endopeptidases , Heme Oxigenase-1 , Inflamação/tratamento farmacológico , Estresse Oxidativo , Transdução de Sinais
5.
Antioxidants (Basel) ; 12(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37627553

RESUMO

The antioxidative proteolytic fraction, MA-1, was partially purified from Mycoleptodonoides aitchisonii. MA-1 was purified to homogeneity using a two-step procedure, which resulted in an 89-fold increase in specific activity and 42.5% recovery. SDS-PAGE revealed two proteins with a molecular weight of 48 kDa. The zymography results revealed proteolytic activity based on the MA-1 band. MA-1 was found to be stable in the presence of Na+, Ca2+, Fe3+, K+, and Mg2+. MA-1 was also stable in methanol, ethanol, and acetone, and its enzyme activity increased by 15% in SDS. MA-1 was inhibited by ethylenediaminetetra-acetic acid or ethylene glycol tetraacetic acid and exerted the highest specificity for the substrate, MeO-Suc-Arg-Pro-Tyr-pNA, for chymotrypsin. Accordingly, MA-1 belongs to the family of chymotrypsin-like metalloproteins. The optimum temperature was 40 °C and stability was stable in the range of 20 to 35 °C. The optimum pH and stability were pH 5.5 and pH 4-11. MA-1 exhibited stronger fibrinolytic activity than plasmin. MA-1 hydrolyzed the Aα, Bß, and γ chains of fibrinogen within 2 h. MA-1 exhibited an antithrombotic effect in animal models. MA-1 was devoid of hemorrhagic activity at a dose of 80,000 U/kg. Overall, our results show that M. aitchisonii produces an acid-tolerant and antioxidative chymotrypsin-like fibrinolytic enzyme, and M. aitchisonii containing MA-1 could be a beneficial functional material for the prevention of cardiovascular diseases and possible complications.

6.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569846

RESUMO

Asthma is a chronic inflammatory disease of the pulmonary system associated with many wheeze-to-sleep apnea complications that may lead to death. In 2019, approximately 262 million patients suffered from asthma, and 455 thousand died from the disease worldwide. It is a more severe health problem in children and older adults, and as the aging of society intensifies, the problem will continue to worsen. Asthma inducers can be classified as indoor and outdoor allergens and can cause asthma due to their repeated invasion. There are several theories about asthma occurrence, such as the imbalance between Th1 and Th2, inflammation in the pulmonary system, and the abnormal apoptosis/cell proliferation of cells related to asthma. Although there are many medications for asthma, as it is an incurable disease, the purpose of the drugs is only to suppress the symptoms. The current drugs can be divided into relievers and controllers; however, as they have many adverse effects, such as immune suppression, growth retardation, promotion of cataracts, hyperactivity, and convulsions, developing new asthma drugs is necessary. Although natural products can have adverse effects, the development of asthma drugs from natural products may be beneficial, as some have anti-asthmatic effects such as immune modulation, anti-inflammation, and/or apoptosis modulation.


Assuntos
Antiasmáticos , Asma , Produtos Biológicos , Criança , Humanos , Idoso , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Asma/tratamento farmacológico , Asma/etiologia , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Inflamação/tratamento farmacológico , Desenvolvimento de Medicamentos
7.
Front Pharmacol ; 14: 1160330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305531

RESUMO

Introduction: In the present study, strong xanthine oxidase and elastase activities of Baccharis trimera (Less) DC stem (BT) were evaluated and active ingredients were identified to determine the possibility of using BT extract as an anti-hyperuricemia (gout) and cosmetic functional material. Methods: Hot water, 20, 40, 60, 80, and 100% ethanolic extracts of BT were prepared. The hot water extract had the highest extraction yield whereas the 100% ethanolic extract had the lowest yield. Results and discussion: Antioxidant effects were investigated based on DPPH radical scavenging activity, reducing power, and total phenolic contents. The 80% ethanolic extract showed the highest antioxidant activity. However, the 100% ethanol BT extract showed strong xanthine oxidase and elastase inhibitory activities. Functional substances were thought to be caffeic acid and luteolin. Minor active substances such as o-coumaric acid, palmitic acid, naringenin, protocatechoic acid, and linoleic acid were identified. Through this study, we firstly reported evidence that BT stem extract could be used as functional materials with anti-hyperuricemia and skin disease improving effects. BT stem extract could be used as an anti-hyperuricemia (gout) natural drug or cosmetic material. For further study, practical studies such as optimizing BT extraction and functional experiments for hyperuricemia (gout) and skin wrinkle improvement are considered necessary.

8.
Biomol Ther (Seoul) ; 31(4): 446-455, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37188656

RESUMO

The mechanistic functions of 3-deoxysappanchalcone (3-DSC), a chalcone compound known to have many pharmacological effects on lung cancer, have not yet been elucidated. In this study, we identified the comprehensive anti-cancer mechanism of 3-DSC, which targets EGFR and MET kinase in drug-resistant lung cancer cells. 3-DSC directly targets both EGFR and MET, thereby inhibiting the growth of drug-resistant lung cancer cells. Mechanistically, 3-DSC induced cell cycle arrest by modulating cell cycle regulatory proteins, including cyclin B1, cdc2, and p27. In addition, concomitant EGFR downstream signaling proteins such as MET, AKT, and ERK were affected by 3-DSC and contributed to the inhibition of cancer cell growth. Furthermore, our results show that 3-DSC increased redox homeostasis disruption, ER stress, mitochondrial depolarization, and caspase activation in gefitinib-resistant lung cancer cells, thereby abrogating cancer cell growth. 3-DSC induced apoptotic cell death which is regulated by Mcl-1, Bax, Apaf-1, and PARP in gefitinib-resistant lung cancer cells. 3-DSC also initiated the activation of caspases, and the pan-caspase inhibitor, Z-VAD-FMK, abrogated 3-DSC induced-apoptosis in lung cancer cells. These data imply that 3-DSC mainly increased mitochondria-associated intrinsic apoptosis in lung cancer cells to reduce lung cancer cell growth. Overall, 3-DSC inhibited the growth of drug-resistant lung cancer cells by simultaneously targeting EGFR and MET, which exerted anti-cancer effects through cell cycle arrest, mitochondrial homeostasis collapse, and increased ROS generation, eventually triggering anticancer mechanisms. 3-DSC could potentially be used as an effective anti-cancer strategy to overcome EGFR and MET target drug-resistant lung cancer.

9.
Fish Shellfish Immunol ; 137: 108741, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37088346

RESUMO

Haliotis discus hannai, a food with a high protein content, is widely consumed in Asian countries. It is known to have antioxidant, anticancer, and antibacterial effects. Since the biological significance of H. discus hannai hemolymph has not been widely studied, the objective of the present study was to purify phenoloxidase (PO) and investigate its immunological effects on human colonic epithelial cells. PO was purified through ammonium sulfate precipitation and one step column chromatography. The molecular weight of the protein was about 270 kDa. When PO was mixed with Gram-negative bacteria-derived lipopolysaccharide (LPS) at various ratios (10:1-1:10, w/w), the amount of residual LPS was reduced. PO at concentrations up to 200 µg/mL was not cytotoxic to HT-29 cells. The inflammatory response induced by LPS in HT-29 cells was regulated when the concentration of PO was increased. With increasing concentration of PO, production levels of pro-inflammatory cytokines, cytokines associated with hyperimmune responses such as IL4, IL-5, and INF-γ, and prostaglandin 2 (PGE2) were regulated. It was thought that simultaneous treatment with PO and LPS anti-inflammatory effects in HT-29 cells showed by regulating the ERK1/2-mediated NF-κB pathway. Results of this study suggest that H. discus hannai hemolymph is involved in the regulation of Gram-negative bacteria-related inflammatory immune responses in human colonic epithelial cells.


Assuntos
Gastrópodes , Monofenol Mono-Oxigenase , Animais , Humanos , Monofenol Mono-Oxigenase/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
10.
Heliyon ; 9(3): e14188, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938382

RESUMO

To understand the production and characteristics of protein hydrolysates pertaining to individual fish species, we selected and analyzed the most important commercial fish species according to the market value based on the Statistics on International Exports of Fishery Commodities by Food and Agriculture Organization. Accordingly, salmon, shrimp, cod, tuna, squid, and herring are marine species with high global value. Peptides obtained from their by-products were predominant in hydrophobic amino acids such as alanine, phenylalanine, methionine, proline, valine, tyrosine, tryptophan, leucine, and isoleucine. Bioactive peptides are short with a length of 2-20 amino acids. They remain inactive when they are within their parent proteins. Low molecular weight (0.3-8 kDa) peptides from hydrolyzed protein are easily digestible, readily absorbed by the body and are water-soluble. The hydrophobic nature contributes to their bioactivity, which facilitates their interactions with the membrane lipid bilayers. Incomplete hydrolysis results in low yields of hydrophobic amino acids. The glycosylation type of the resulting peptide fragment determines the different applications of the hydrolysate. The degree of conservation of the glycosidic residues and the size of the peptides are influenced by the method used to generate these hydrolysates. Therefore, it is crucial to explore inexpensive novel methodologies to generate bioactive peptides. According to the current studies, a unified approach (in silico estimation coupled with peptidomics) can be used for the identification of novel peptides with diverse physiological and technological functions. From an industrial perspective, the reusability of immobilized enzymes and membrane separation techniques (e.g., ultrafiltration) on marine by-products can offer low operating costs and higher yield for large-scale production of bioactive peptides. This review summarizes the production processes and essential characteristics of protein hydrolysates from fish by-products and presents the advances in their application.

11.
J Control Release ; 356: 507-524, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907564

RESUMO

We developed an orally delivered nanoemulsion that induces cancer immunization. It consists of tumor antigen-loaded nano-vesicles carrying the potent invariant natural killer T-cell (iNKT) activator α-galactosylceramide (α-GalCer), to trigger cancer immunity by effectively activating both innate and adaptive immunity. It was validated that adding bile salts to the system boosted intestinal lymphatic transport as well as the oral bioavailability of ovalbumin (OVA) via the chylomicron pathway. To increase intestinal permeability further and amplify the antitumor responses, an ionic complex of cationic lipid 1,2-dioleyl-3-trimethylammonium propane (DTP) with sodium deoxycholate (DA) (DDP) and α-GalCer were anchored onto the outer oil layer to form OVA-NE#3. As expected, OVA-NE#3 exhibited tremendously improved intestinal cell permeability as well as enhanced delivery to mesenteric lymph nodes (MLNs). Subsequent activation of dendritic cells and iNKTs, in MLNs were also observed. Tumor growth in OVA-expressing mice with melanoma was more strongly suppressed (by 71%) after oral administration of OVA-NE#3 than in untreated controls, confirming the strong immune response induced by the system. The serum levels of OVA-specific IgG1 and IgG2a were 3.52- and 6.14-fold higher than in controls. Treating OVA-NE#3 increased the numbers of tumor-infiltrating lymphocytes, including cytotoxic T-cell and M1-like macrophage. Antigen- and α-GalCer-associated enrichment of dendritic cells and iNKTs in tumor tissues also increased after OVA-NE#3 treatment. These observations indicate that our system induces both cellular and humoral immunity by targeting the oral lymphatic system. It may offer a promising oral anti-cancer vaccination strategy that involves the induction of systemic anti-cancer immunization.


Assuntos
Antígenos de Neoplasias , Melanoma , Camundongos , Animais , Ovalbumina , Imunização , Camundongos Endogâmicos C57BL
12.
Antioxidants (Basel) ; 12(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36978904

RESUMO

Licochalcone B (LCB) exhibits anticancer activity in oral cancer, lung cancer, and hepatocellular carcinoma cells. However, little is known about its antitumor mechanisms in human oxaliplatin-sensitive and -resistant colorectal cancer (CRC) cells. The purpose of the present study was to investigate the antitumor potential of LCB against human colorectal cancer in vitro and analyze its molecular mechanism of action. The viability of CRC cell lines was evaluated using the MTT assay. Flow cytometric analyses were performed to investigate the effects of LCB on apoptosis, cell cycle distribution, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) dysfunction, and multi-caspase activity in CRC cells. The results demonstrated that LCB induced a reduction in cell viability, apoptosis, G2/M cell cycle arrest, ROS generation, MMP depolarization, activation of multi-caspase, and JNK/p38 MAPK. However, p38 (SB203580) and JNK (SP600125) inhibitors prevented the LCB-induced reduction in cell viability. The ROS scavenger N-acetylcysteine (NAC) inhibited LCB-induced reduction in cell viability, apoptosis, cell cycle arrest, ROS generation, MMP depolarization, and multi-caspase and JNK/p38 MAPK activities. Taken together, LCB has a potential therapeutic effect against CRC cells through the ROS-mediated JNK/p38 MAPK signaling pathway. Therefore, we expect LCB to have promising potential as an anticancer therapeutic and prophylactic agent.

13.
Pharmaceutics ; 15(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36839662

RESUMO

Atraric acid (AA) is a phenolic compound isolated from Stereocaulon japonicum that has demonstrated anti-androgen properties and was used to design an alternative formulation for the treatment of alopecia. This new topical formulation was designed using a solvent mixture system composed of ethanol as a volatile vehicle, oleic acid as a permeation enhancer, and water for skin hydration. The ideal topical AA formulation (AA-TF#15) exhibited an 8.77-fold higher human skin flux and a 570% increase in dermal drug deposition, compared to 1% (w/w) AA in ethanol. In addition, compared to other formulations, AA-TF#15 (1% [w/w] AA) activated keratinocytes and human dermal papilla cell proliferation at a concentration of 50 µM AA, which is equivalent to 50 µM minoxidil. Moreover, AA-TF#15 treatment produced a significant increase in hair regrowth by 58.0% and 41.9% compared to the 1% (w/w) minoxidil and oral finasteride (1 mg/kg)-treated mice. In addition, AA-TF#15 showed a higher expression level of aldehyde dehydrogenase 1, ß-catenin, cyclin D1, and pyruvate kinase M2 proteins in the skin of AA-TF#15-treated mice compared to that of those treated with minoxidil and oral finasteride. These findings suggest AA-TF#15 is an effective formulation for the treatment of scalp androgenic alopecia.

14.
Phytother Res ; 37(2): 563-577, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36184899

RESUMO

Colorectal cancer (CRC) is a very common and deadly cancer worldwide, and oxaliplatin is used as first-line chemotherapy. However, resistance usually develops, limiting treatment. Echinatin (Ech) is the main component of licorice and exhibits various therapeutic effects on inflammation-mediated diseases and cancer, ischemia/reperfusion, and liver injuries. The present study elucidated the underlying molecular mechanism of Ech-induced apoptosis in both oxaliplatin-sensitive (HT116 and HT29) and -resistant (HCT116-OxR and HT29-OxR) CRC cells. To evaluate the antiproliferative activities of Ech, we performed MTT and soft agar assays. Ech reduced viability, colony size, and numbers of CRC cells. The underlying molecular mechanisms were explored by various flow cytometry analyses. Ech-induced annexin-V stained cells, reactive oxygen species (ROS) generation, cell cycle arrest, JNK/p38 MAPK activation, endoplasmic reticulum (ER) stress, mitochondrial membrane potential depolarization, and multi-caspase activity. In addition apoptosis-, cell cycle-, and ER stress-related protein levels were confirmed by western blotting. Moreover, we verified ROS-mediated cell death by treatment with inhibitors such as N-acetyl-L-cysteine, SP600125, and SB203580. Taken together, Ech exhibits anticancer activity in oxaliplatin-sensitive and -resistant CRCs by inducing ROS-mediated apoptosis through the JNK/p38 MAPK signaling pathway. This is the first study to show that Ech has the potential to treat drug-resistant CRC, providing new directions for therapeutic strategies targeting drug-resistant CRC.


Assuntos
Neoplasias Colorretais , Sistema de Sinalização das MAP Quinases , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxaliplatina/farmacologia , Linhagem Celular Tumoral , Apoptose , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo
15.
Drug Deliv ; 29(1): 3397-3413, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36419245

RESUMO

Atorvastatin (ATV) has attracted considerable attention as a potential therapeutic agent for cancer because it inhibits cancer cell proliferation by suppressing the mevalonate pathway. However, because of its low oral absorption, high doses of ATV are required for chemotherapeutic applications. In this study, we constructed ATV-loaded nanoemulsions (ATV-NEs) containing multivalent intestinal transporter-targeting lipids to improve the oral bioavailability of ATV. ATV-NEs were prepared via oil-in-water emulsification for transporter-targeted delivery, and contained the following anchors: an ionic complex of deoxycholic acid (DOCA) with the cationic lipid 1,2-dioleyl-3-trimethylammonium propane (DOTAP) (DOCA-DOTAP), a biotin-conjugated lipid (Biotinyl PE), and d-alpha-tocopherol polyethylene glycol succinate (TPGS) to allow bile acid- and multivitamin transporter-mediated permeation of ATV without P-glycoprotein (P-gp)-mediated efflux. The optimized formulation (ATV-NE#6) had 1,091% higher oral bioavailability than free ATV. Finally, treatment of 4T1 cell-bearing mice with oral ATV-NE#6 (equivalent to 40 mg/kg ATV) significantly suppressed tumor growth; the maximum tumor growth reduction was 2.44-fold that of the control group. The results thus suggest that ATV-NEs allow for effective oral chemotherapy by enhancing the oral bioavailability of ATV.


Assuntos
Acetato de Desoxicorticosterona , Animais , Camundongos , Atorvastatina , Intestinos , Proteínas de Membrana Transportadoras , Metabolismo dos Lipídeos
16.
J Control Release ; 349: 502-519, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835400

RESUMO

In this study, a system for oral delivery of recombinant human parathyroid hormone [rhPTH(1-34); teriparatide (TRP)] was developed to enhance oral absorption and to demonstrate an equivalent therapeutic effect to that of subcutaneous (SC) TRP injection. The solid oral formulation of TRP was prepared by electrostatic complexation with l-lysine-linked deoxycholic acid (LDA) and deoxycholic acid (DA) at a molar ratio of 1:5:7 in the aqueous dispersion of non-ionic n-dodecyl-ß-d-maltoside (DM) at a 1:15 weight ratio, followed by freeze-drying the dispersal, yielding TRP(1:5:7)-15. As expected, TRP(1:5:7)-15 showed a 414% increase in permeability across the Caco-2/HT29-MTX-E12 cell monolayer, resulting in a 13.0-fold greater oral bioavailability compared with free TRP. In addition, the intestinal transport mechanisms in the presence of specific inhibitors of clathrin-mediated endocytosis, macropinocytosis, and bile acid transporters revealed 44.4%, 28.7%, and 51.2% decreases in transport, respectively, confirming that these routes play crucial roles in the permeation of TRP in TRP(1:5:7)-15. Notably, this formulation showed similar activation of the release of cyclic adenosine monophosphate (cAMP) compared with TRP, suggesting equivalent efficacy in the parathyroid hormone receptor-adenylate cyclase system of osteosarcoma cells. Furthermore, oral TRP(1:5:7)-15 (equivalent to 0.4 mg/kg TRP) demonstrated increases in bone mineral density (36.9%) and trabecular thickness (31.3%) compared with untreated glucocorticoid-induced osteoporotic mice. Moreover, the elevated levels of biomarkers of bone formation, including osteocalcin, were also comparable with those after SC injection of TRP (0.02 mg/kg). These findings suggest that TRP(1:5:7)-15 can be used as an effective oral therapy for the management of osteoporosis.


Assuntos
Osteoporose , Teriparatida , Monofosfato de Adenosina/uso terapêutico , Adenilil Ciclases/uso terapêutico , Administração Oral , Animais , Ácidos e Sais Biliares , Biomarcadores , Células CACO-2 , Clatrina , Ácido Desoxicólico , Glucocorticoides , Humanos , Lisina , Camundongos , Osteocalcina , Osteoporose/tratamento farmacológico , Hormônio Paratireóideo/uso terapêutico , Receptor Tipo 1 de Hormônio Paratireóideo , Teriparatida/uso terapêutico
17.
Drug Deliv ; 29(1): 328-341, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35040730

RESUMO

To prepare a topical formulation of bimatoprost (BIM) with high skin permeability, we designed a solvent mixture system composed of ethanol, diethylene glycol monoethyl ether, cyclomethicone, and butylated hydroxyanisole, serving as a volatile solvent, nonvolatile co-solvent, spreading agent, and antioxidant, respectively. The ideal topical BIM formulation (BIM-TF#5) exhibited 4.60-fold higher human skin flux and a 529% increase in dermal drug deposition compared to BIM in ethanol. In addition, compared to the other formulations, BIM-TF#5 maximally activated human dermal papilla cell proliferation at a concentration of 5 µM BIM, equivalent to 10 µM minoxidil. Moreover, BIM-TF#5 (0.3% [w/w] BIM) significantly promoted hair regrowth in the androgenic alopecia mouse model and increased the area covered by hair at 10 days by 585% compared to the vehicle-treated mice, indicating that entire telogen area transitioned into the anagen phase. Furthermore, at day 14, the hair weight of mice treated with BIM-TF#5 (5% [w/w] BIM) was 8.45- and 1.30-fold greater than in the 5% (w/w) BIM in ethanol and 5% (w/v) minoxidil treated groups, respectively. In the histological examination, the number and diameter of hair follicles in the deep subcutis were significantly increased in the BIM-TF#5 (0.3 or 5% [w/w] BIM)-treated mice compared to the mice treated with vehicle or 5% (w/w) BIM in ethanol. Thus, our findings suggest that BIM-TF#5 is an effective formulation to treat scalp alopecia, as part of a novel therapeutic approach involving direct prostamide F2α receptor-mediated stimulation of dermal papilla cells within hair follicles.


Assuntos
Alopecia/patologia , Bimatoprost/farmacologia , Sistemas de Liberação de Medicamentos , Folículo Piloso/efeitos dos fármacos , Cabelo/efeitos dos fármacos , Administração Tópica , Animais , Antioxidantes/química , Bimatoprost/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Minoxidil/farmacologia , Absorção Cutânea/efeitos dos fármacos , Absorção Cutânea/fisiologia , Solventes/química
18.
Biomol Ther (Seoul) ; 29(6): 658-666, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34642263

RESUMO

Podophyllotoxin (PT), a lignan compound from the roots and rhizomes of Podophyllum peltatum, has diverse pharmacological activities including anticancer effect in several types of cancer. The molecular mechanism of the anticancer effects of PT on colorectal cancer cells has not been reported yet. In this study, we sought to evaluate the anticancer effect of PT on human colorectal cancer HCT116 cells and identify the detailed molecular mechanism. PT inhibited the growth of cells and colony formation in a concentration-dependent manner and induced apoptosis as determined by the annexin V/7-aminoactinomycin D double staining assay. PT-induced apoptosis was accompanied by cell cycle arrest in the G2/M phase and an increase in the generation of reactive oxygen species (ROS). The effects of PT on the induction of ROS and apoptosis were prevented by pretreatment with N-acetyl-L-cysteine (NAC), indicating that an increase in ROS generation mediates the apoptosis of HCT116 cells induced by PT. Furthermore, Western blot analysis showed that PT upregulated the level of phospho (p)-p38 mitogen-activated protein kinase (MAPK). The treatment of SB203580, a p38 inhibitor, strongly prevented the apoptosis induced by PT, suggesting that PT-induced apoptosis involved the p38 MAPK signaling pathway. In addition, PT induced the loss of mitochondrial membrane potential and multi-caspase activation. The results suggested that PT induced cell cycle arrest in the G2/M phase and apoptosis through the p38 MAPK signaling pathway by upregulating ROS in HCT116 cells.

19.
J Microbiol Biotechnol ; 31(12): 1615-1623, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34528917

RESUMO

Picropodophyllotoxin (PPT), an epimer of podophyllotoxin, is derived from the roots of Podophyllum hexandrum and exerts various biological effects, including anti-proliferation activity. However, the effect of PPT on colorectal cancer cells and the associated cellular mechanisms have not been studied. In the present study, we explored the anticancer activity of PPT and its underlying mechanisms in HCT116 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to monitor cell viability. Flow cytometry was used to evaluate cell cycle distribution, the induction of apoptosis, the level of reactive oxygen species (ROS), assess the mitochondrial membrane potential (Δψm), and multi-caspase activity. Western blot assays were performed to detect the expression of cell cycle regulatory proteins, apoptosis-related proteins, and p38 MAPK (mitogen-activated protein kinase). We found that PPT induced apoptosis, cell cycle arrest at the G1 phase, and ROS in the HCT116 cell line. In addition, PPT enhanced the phosphorylation of p38 MAPK, which regulates apoptosis and PPT-induced apoptosis. The phosphorylation of p38 MAPK was inhibited by an antioxidant agent (N-acetyl-L-cysteine, NAC) and a p38 inhibitor (SB203580). PPT induced depolarization of the mitochondrial inner membrane and caspase-dependent apoptosis, which was attenuated by exposure to Z-VAD-FMK. Overall, these data indicate that PPT induced G1 arrest and apoptosis via ROS generation and activation of the p38 MAPK signaling pathway.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Podofilotoxina/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/química , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HCT116 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Podofilotoxina/química , Podofilotoxina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
J Ginseng Res ; 45(4): 482-489, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295208

RESUMO

BACKGROUND: Asthma is an incurable hyper-responsive disease of the pulmonary system that is caused by various allergens, including indoor and outdoor stimulators. According to the Global Asthma Network, 339 million people suffered from asthma in 2018, with particularly severe forms in children. Numerous treatments for asthma are available; however, they are frequently associated with adverse effects such as growth retardation, neurological disorders (e.g., catatonia, poor concentration, and insomnia), and physiological disorders (e.g., immunosuppression, hypertension, hyperglycemia, and osteoporosis). METHODS: Korean Red Ginseng has long been used to treat numerous diseases in many countries, and we investigated the anti-asthmatic effects and mechanisms of action of Korean Red Ginseng. Eighty-four BALB/c mice were assigned to 6 treatment groups: control, ovalbumin-induced asthma group, dexamethasone treatment group, and 3 groups treated with Korean Red Ginseng water extract (KRGWE) at 5, 25, or 50 mg/kg/day for 5 days. Anti-asthmatic effects of KRGWE were assessed based on biological changes, such as white blood cell counts and differential counts in the bronchoalveolar lavage fluid, serum IgE levels, and histopathological changes in the lungs, and by examining anti-asthmatic mechanisms, such as the cytokines associated with Th1, Th2, and Treg cells and inflammation pathways. RESULTS: KRGWE affected ovalbumin-induced changes, such as increased white blood cell counts, increased IgE levels, and morphological changes (mucous hypersecretion, epithelial cell hyperplasia, inflammatory cell infiltration) by downregulating cytokines such as IL-12, IL-4, and IL-6 via GATA-3 inactivation and suppression of inflammation via NF-κB/COX-2 and PGE2 pathways. CONCLUSION: KRGWE is a promising drug for asthma treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...